Олимпиадные задачи по теме «Логика и теория множеств» для 10 класса - сложность 3 с решениями
Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, ... так, чтобы при любом натуральном <i>k</i> сумма всех чисел, входящих в подмножество <i>A<sub>k</sub></i>, равнялась <i>k</i> + 2013?
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
Из 239 неотличимых на вид монет две – одинаковые фальшивые, а остальные – одинаковые настоящие, отличающиеся от фальшивых по весу. Как за три взвешивания на чашечных весах без гирь выяснить, какая монета тяжелее – фальшивая или настоящая? Сами фальшивые монеты находить не нужно.
На окружности отмечено 2<i>n</i> + 1 точек, делящих её на равные дуги (<i>n</i> ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых <i>N</i> позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем <i>N</i> он гарантированно сможет это сделать?
Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)
На столе лежит куча из более чем <i>n</i>² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее <i>n</i>, либо любое кратное <i>n</i> число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на <i>a</i> метров у себя и на <i>b</i> метров у соперника", где <i>a, b</i> – действительные числа, 0 < <i>a</i> < <i>b</i>. Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе
а) конечно; б) бесконечно?
По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?
Игровое поле представляет собой полоску1<i>× N </i>. В начале игры на нескольких крайних левых полях стоит по одной белой шашке, на стольких же крайних правых полях — по одной чёрной шашке. Белые и Чёрные ходят по очереди, начинают Белые. Ход заключается в передвижении одной из своих шашек в направлении противника (Белые ходят направо, Чёрные — налево). Можно делать простой ход или бить шашки соперника. При простом ходе разрешается перемещать шашку на любое число клеток, но нельзя перепрыгивать ни через свои шашки, ни через чужие. Бьют шашки соперника по тем же правилам, что и в обычных шашках: Шашка бьёт шашку соперника, стоящую на соседнем поле, если следующее за ним поле свободно. При этом своя шашка перемещается на это свободное поле, а побитая шашка соперника снимается с д...
Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры. Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр? Рассмотрите случаи: а) Начальная клетка — угловая, поле любого размера; б) Поле и начальная клетка как на рисунке к этому заданию; в) Общий случай: поле любого размера, и начальная клетка в нём произвольная. г)<b>Дополнительное задание.</b>Можно подумать, что начальная клетка определяет исход партии независимо от действий иг...
Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто-то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр? Рассмотрите случаи: а) У каждого по две горошины; б) У каждого по три горошины; в) У каждого по десять горошин; г) Общий случай: у каждого по<i> N </i>горошин.
В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по одной монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить "облегчённый" кошелёк?
Двое играющих по очереди пишут – каждый на своей половине доски – по одному натуральному числу (повторения разрешаются) так, чтобы сумма всех чисел на доске не превосходила 10000. После того, как сумма всех чисел на доске становится равной 10000, игра заканчивается подсчетом суммы всех цифр на каждой половине. Выигрывает тот, на чьей половине сумма цифр меньше (при равных суммах – ничья). Может ли кто-нибудь из игроков выиграть, как бы ни играл противник?
В каждой клетке квадрата 101<i>×</i>101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?
Пете и Васе подарили одинаковые наборы из <i>N</i> гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение <i>N</i>.
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
На острове живут100рыцарей и100лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно100человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?
При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?
На столе лежат <i>N</i> > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого <i>N</i> выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке<i> p </i>стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких<i> p </i>Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?
У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?
У игрока есть <i>m</i> золотых и <i>n</i> серебряных монет. В начале каждого раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких <i>m</i> и <i>n</i> крупье не сможет ему помешать?