Олимпиадные задачи по теме «Отношение порядка» для 10 класса - сложность 4 с решениями

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше; если <i>A</i> учится лучше <i>B</i>, а тот – лучше <i>C</i>, то <i>A</i> учится лучше <i>C</i>.)

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.

(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?

Пусть  α = (α<sub>1</sub>, ..., α<sub><i>n</i></sub>)  и  β = (β<sub>1</sub>, ..., β<sub><i>n</i></sub>)  – два набора показателей с равной суммой.

Докажите, что, если  α ≠ β,  то при всех неотрицательных  <i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>  выполняется неравенство  <i>T</i><sub>α</sub>(<i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>) ≥ <i>T</i><sub>β</sub>(<i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>).

Определение многочленов <i>T</i><sub>α</sub> смотри в задаче <a href="https://...

Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81<sup>n</sup>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка