Олимпиадные задачи по теме «Отношение порядка» для 10 класса - сложность 3 с решениями
Отношение порядка
НазадЧисла от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?
На берегу круглого острова Гдетотам расположено 20 деревень, в каждой живёт по 20 борцов. Был проведён турнир, в котором каждый борец встретился со всеми борцами из всех других деревень. Деревня <i>А</i> считается сильнее деревни <i>Б</i>, если хотя бы <i>k</i> поединков между борцами из этих деревень заканчивается победой борца из деревни <i>А</i>. Выяснилось, что каждая деревня сильнее следующей за ней по часовой стрелке. Какое наибольшее значение может иметь <i>k</i>? (У всех борцов разная сила, и в поединке всегда побеждает сильнейший.)
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)
Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Докажите, что среди них найдутся три прямоугольника <i>A, B, C</i>, которые можно поместить друг в друга (так что <i>A</i> ⊂ <i>B</i> ⊂ <i>C</i>).
Числа 1, 2, 3, ..., <i>N</i> записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число <i>i</i>, то где-то слева от него встретится хотя бы одно из чисел <i>i</i> + 1 и <i>i</i> – 1. Сколькими способами это можно сделать?
В Швамбрании <i>N</i> городов, каждые два соединены дорогой. При этом дороги сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над другой). Злой волшебник устанавливает на всех дорогах одностороннее движение таким образом, что если из города можно выехать, то в него нельзя вернуться. Доказать, что
а) волшебник может это сделать;
б) найдётся город, из которого можно добраться до всех, и найдётся город, из которого нельзя выехать;
в) существует единственный путь, обходящий все города;
г) волшебник может осуществить своё намерение <i>N</i>! способами.
На соревнованиях по фигурному велосипедированию было 100 судей. Каждый судья упорядочил всех участников (от лучшего по его мнению – к худшему). Оказалось, что ни для каких трёх участников <i>A, B, C</i> не нашлось трёх судей, один из которых считает, что <i>A</i> – лучший из трёх, а <i>B</i> – худший, другой – что <i>B</i> лучший, а <i>C</i> худший, а третий – что <i>C</i> лучший, а <i>A</i> худший. Докажите, что можно составить общий рейтинг участников так, чтобы для каждых двух участников <i>A</i> и <i>B</i> тот, кто выше в рейтинге, был бы лучше другого по мнению хотя бы половины судей.