Олимпиадные задачи по теме «Комбинаторика» для 6-11 класса - сложность 5 с решениями
<i>k</i> вершин правильного <i>n</i>-угольника закрашены. Закраска называется <i>почти равномерной</i>, если для любого натурального <i>m</i> верно следующее условие: если <i>M</i><sub>1</sub> – множество <i>m</i> расположенных подряд вершин и <i>M</i><sub>2</sub> – другое такое множество, то количество закрашенных вершин в <i>M</i><sub>1</sub> отличается от количества закрашенных вершин в <i>M</i><sub>2</sub> не больше чем на 1. Доказать, что для любых натуральных <i>n</i> и <i>k</i> ≤ <i>n</i> почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множест...
а) Каждая сторона равностороннего треугольника разбита на <i>m</i> равных частей, и через точки деления проведены прямые, параллельные сторонам, разрезавшие треугольник на <i>m</i>² маленьких треугольников. Среди вершин полученных треугольников нужно отметить <i>N</i> вершин так, чтобы ни для каких двух отмеченных вершин <i>A</i> и <i>B</i> отрезок <i>АВ</i> не был параллелен ни одной из сторон. Каково наибольшее возможное значение <i>N</i> (при заданном <i>m</i>)? б) Разделим каждое ребро тетраэдра на <i>m</i> равных частей и через точки деления проведём плоскости, параллельные граням. Среди вершин полученных многогранников отметим <i>N</i> вершин так, чтобы никакие...
Белая фигура «жук» стоит в угловой клетке доски $1000\times n$, где $n$ — нечётное натуральное число, большее $2020$. В двух ближайших к ней углах доски стоят два чёрных шахматных слона. При каждом ходе жук или переходит на клетку, соседнюю по стороне, или ходит как шахматный конь. Жук хочет достичь противоположного угла доски, не проходя через клетки, занятые или атакованные слоном, и побывав на каждой из остальных клеток ровно по одному разу. Покажите, что количество путей, по которым может пройти жук, не зависит от $n$.
У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать?