Олимпиадные задачи по теме «Теория графов» для 8 класса - сложность 4 с решениями

Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.

Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

Оля и Максим оплатили путешествие по архипелагу из 2009 островов, где некоторые острова связаны двусторонними маршрутами катера. Они путешествуют, играя. Сначала Оля выбирает остров, на который они прилетают. Затем они путешествуют вместе на катерах, по очереди выбирая остров, на котором еще не были (первый раз выбирает Максим). Кто не сможет выбрать остров, проиграл. Докажите, что Оля может выиграть.

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  <i>N</i> + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.

В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?

Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы <i>A</i> гидры. Но при этом из головы <i>A</i> мгновенно вырастает по одной шее во все головы, с которыми <i>A</i> не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее <i>N</i>, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем <i>N</i> ударов.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в каждый, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более пяти дорог.

  а) Докажите, что это возможно.

  б) Докажите, что если в формулировке заменить число 5 на число 4, то желание короля станет неосуществимым.

Квадратная таблица размером <i>n×n</i> заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать <i>n</i> положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке.

У Карабаса-Барабаса есть большой участок земли в форме выпуклого $12$-угольника, в вершинах которого стоят фонари. Карабасу-Барабасу нужно поставить внутри участка некоторое конечное число фонарей, разделить его на треугольные участки с вершинами в фонарях и раздать эти участки актёрам театра. При этом каждый внутренний фонарь должен освещать не менее шести треугольных участков (фонарь светит недалеко, только на те участки, в вершине которых стоит). Какое максимальное количество треугольных участков может раздать Карабас-Барабас актёрам?

За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа. Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой. Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных), но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар. При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?

В некотором государстве 32 города, каждые два из которых соединены дорогой с односторонним движением. Министр путей сообщения, тайный злодей, решил так организовать движение, что, покинув любой город, в него нельзя будет вернуться. Для этого он каждый день, начиная с 1 июня 2021 года, может менять направление движения на одной из дорог. Докажите, что он сможет добиться своего к 2022 году (то есть за 214 дней).

На олимпиаду пришло 2018 участников, некоторые из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то из них. Докажите, что можно рассадить всех участников олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка