Олимпиадные задачи по теме «Теория графов» для 10 класса - сложность 3-5 с решениями
Теория графов
НазадИзначально на доске были написаны одночленs 1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>. Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены <i>S</i><sub>1</sub> = 1 + <i>x, S</i><sub>2</sub> = 1 + <i>x + x</i>², <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>, ..., <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>. Докажите...
В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2<i><sup>k</sup></i>}, а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.
Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.
В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.
На доске выписано (<i>n</i> – 1)<i>n</i> выражений: <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>, <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>, <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>, ..., <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>, где <i>n</i&...
В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей). а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным? б) Пусть стёрлись <i>k</i> записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем <i>k</i> всегда можно однозначно восстановить стёршиеся записи?
На плоскости отметили 4<i>n</i> точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых <i>n</i> + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7<i>n</i> отрезков.
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет. <div align="center"><img src="/storage/problem-media/115497/problem_115497_img_2.gif"> </div>
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.
В королевстве <i>N</i> городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются <i>соседними</i>). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
Однажды Король провел такую реформу: каждый из <i>N</i> мэров городов стал снова мэром одного из <i>N</i> городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара сос...
В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.
У выпуклого многогранника одна вершина <i>A</i> имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета <i>хорошей</i>, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из <i> A </i>, покрашены в один цвет.
В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i> (2 ≤ <i>k ≤ N</i>) при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить 2<i>k</i> – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?
Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?
Клетчатая прямоугольная сетка <i>m</i>×<i>n</i> связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?
Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.
В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причём министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта.
Может ли кто-либо из министров добиться отставки другого независимо от его игры?
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?
Множество клеток на клетчатой плоскости назовем <i>ладейно связным</i>, если из каждой его клетки можно попасть в любую другую, двигаясь по клеткам этого множества ходом ладьи (ладье разрешается перелетать через поля, не принадлежащие нашему множеству). Докажите, что ладейно связное множество из 100 клеток можно разбить на пары клеток, лежащих в одной строке или в одном столбце.