Олимпиадные задачи по теме «Геометрия» для 1-5 класса - сложность 1 с решениями

Разрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>

Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.

Чему равна сторона квадрата, если площадь прямоугольника 54 м²?

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). <div align="center"><img src="/storage/problem-media/116655/problem_116655_img_2.gif"></div>А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)

В точке В живёт Винни-Пух, а в точках К, С, П и И – его друзья Кролик, Сова, Пятачок и ослик Иа-Иа (см. рисунок). <div align="center"><img src="/storage/problem-media/116471/problem_116471_img_2.gif"></div>Зимним утром Винни-Пух навестил их всех по одному разу, а потом вернулся домой. При этом он протоптал в снегу пять прямых тропинок от домика к домику, не пересекающих друг друга. Начертите как можно больше возможных маршрутов Винни-Пуха.

Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры. <div align="center"><img src="/storage/problem-media/116466/problem_116466_img_2.gif"></div>

Из прозрачной пленки вырезаны три квадрата с узорами, нарисованными на них чёрной краской (см. рисунок). <div align="center"><img src="/storage/problem-media/116461/problem_116461_img_2.gif"></div>Нарисуйте узор, который получится при наложении этих трёх квадратов друг на друга. (Поворачивать квадраты нельзя.)

Разрежьте квадрат 6×6 клеточек на трёхклеточные уголки (см. рис.) так, чтобы никакие два уголка не образовывали прямоугольник 2×3. <center> <img align="absmiddle" src="/storage/problem-media/116061/problem_116061_img_2.gif"> </center>

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем16клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.

<center><i> <img align="absmiddle" src="/storage/problem-media/115487/problem_115487_img_2.gif"> </i></center>

Разрежьте данную фигуру (см. рисунок) на три равных фигуры. <center><i> <img align="absmiddle" src="/storage/problem-media/115474/problem_115474_img_2.gif"> </i></center>

Разрежьте фигуру, изображенную на рисунке, на две равные части. <center><i> <img align="absmiddle" src="/storage/problem-media/115469/problem_115469_img_2.gif"> </i></center>

Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.

Маша посмотрела на рисунок и сказала: "Здесь нарисовано семь прямоугольников: один большой и шесть маленьких". "Здесь есть еще различные средние прямоугольники" – сказала мама. Сколько же всего прямоугольников на этом рисунке? Ответ объясните. <img src="/storage/problem-media/111235/problem_111235_img_2.gif">

Разрежьте одну из фигур, приведенных на рисунке, на две части так, чтобы из них можно было сложить каждую из оставшихся. Нарисуйте, как вы разрезаете и как складываете.

<i> <img src="/storage/problem-media/111230/problem_111230_img_2.gif"> </i>

<i> <img src="/storage/problem-media/111230/problem_111230_img_3.gif"> </i>

<i> <img src="/storage/problem-media/111230/problem_111230_img_4.gif"> </i>

Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?

Составьте квадрат, используя ровно четыре из пяти изображенных ниже фигур. Каждую из четырех выбранных Вами фигур можно использовать только один раз.<div align="center"><img src="/storage/problem-media/104070/problem_104070_img_2.jpg"></div>

Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.<div align="center"><img src="/storage/problem-media/104064/problem_104064_img_2.gif"></div>

Найдите площадь фигур, изображенных на рисунке. <img src="/storage/problem-media/103947/problem_103947_img_2.png">

На кольцевой дороге расположены четыре бензоколонки:<i>A</i>,<i>B</i>,<i>C</i>и<i>D</i>. Расстояние между<i>A</i>и<i>B</i> — 50 км, между<i>A</i>и<i>C</i> — 40 км, между<i>C</i>и<i>D</i> — 25 км, между<i>D</i>и<i>A</i> — 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону). а) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи.

б) Найдите расстояние между <i>B</i> и <i>C</i> (укажите все возможности).

Когда Гулливер попал в Лилипутию, он обнаружил, что там все вещи ровно в 12 раз короче, чем на его родине. Сможете ли Вы сказать, сколько лилипутских спичечных коробков поместится в спичечный коробок Гулливера?

У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

У Джузеппе есть лист фанеры, размером 22×15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3×5. Как это сделать?

Угол при вершине журавлиного клина равен 20°.

Как изменится величина этого угла при рассматривании журавлей в бинокль с троекратным увеличением?

В квадрате 4×4 нарисовано 15 точек Доказать, что из него можно вырезать квадратик 1×1, не содержащий внутри себя точек.

Куб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка