Олимпиадные задачи по теме «Стереометрия» для 8-9 класса - сложность 5 с решениями
Стереометрия
Назада) На плоскости даны<i>n</i>векторов, длина каждого из которых<nobr>равна 1.</nobr>Сумма всех<i>n</i>векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех<nobr><i>k</i> = 1,</nobr>2, ...,<i>n</i>выполнялось следующее условие: длина суммы первых<nobr><i>k</i> векторов</nobr>не<nobr>превышает 3.</nobr>б) Докажите аналогичное утверждение для <i>n</i> векторов с <nobr>суммой 0,</nobr> длина каждого из которых не <nobr>превосходит 1.</nobr> в) Можно ли заменить <nobr>число 3</nobr> в <nobr>пункте а)</nobr> меньшим? Постарайтесь улучшить оценку и в <nobr>пункте б).</nobr>
Какое наибольшее число точек можно разместить<nobr>a) на</nobr>плоскости;<nobr>б)* в</nobr>пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным? (Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Женя красила шарообразное яйцо последовательно в пяти красках, погружая его в стакан с очередной краской так, чтобы окрашивалась ровно половина площади поверхности яйца (полсферы). В результате яйцо окрасилось полностью. Докажите, что одна из красок была лишней, то есть если бы Женя не использовала эту краску, а в другие краски погружала бы яйцо так же, то оно всё равно окрасилось бы полностью.