Олимпиадные задачи по теме «Аффинная геометрия» для 11 класса - сложность 4-5 с решениями
Аффинная геометрия
НазадДан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из <i>k</i> цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
а) <i>k</i> = 7; б) <i>k</i> = 10.
В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки
Дан треугольник <i>ABC</i> и прямая <i>l</i>, пересекающая <i>BC, CA</i> и <i>AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно. Точка <i>A'</i> – середина отрезка, соединяющего проекции <i>A</i><sub>1</sub> на <i>AB</i> и <i>AC</i>. Аналогично определяются точки <i>B'</i> и <i>C'</i>.
а) Докажите, что <i>A', B'</i> и <i>C'</i> лежат на некоторой прямой <i>l'</i>.
б) Докажите, что, если <i>l</i> проходит через центр описанной окружности треугольника <...