Олимпиадные задачи по теме «Теория чисел. Делимость» для 5 класса - сложность 3 с решениями
Теория чисел. Делимость
НазадПоследовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?
Найдите все пары простых чисел <i>p</i> и <i>q</i>, обладающие следующим свойством: 7<i>p</i> + 1 делится на <i>q</i>, а 7<i>q</i> + 1 делится на <i>p</i>.
Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
а) жалованье между отрядами Черномор распределяет как ему угодно;
б) жалованье между отрядами Черномор распределяет поровну?
Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?
На сколько равных восьмиугольников можно разрезать квадрат размером 8×8? (Все разрезы должны проходить по линиям сетки.)
Вася живет в многоквартирном доме. В каждом подъезде дома одинаковое количество этажей, на каждом этаже по четыре квартиры, каждая квартира имеет одно-, дву- или трёхзначный номер. Вася заметил, что количество квартир с двузначным номером у него в подъезде в десять раз больше количества подъездов в доме. Сколько всего квартир может быть в этом доме?