Олимпиадные задачи по теме «Средние величины» для 7-8 класса - сложность 4 с решениями

  Пусть 2<i>S</i> – суммарный вес некоторого набора гирек. Назовём натуральное число <i>k средним</i>, если в наборе можно выбрать <i>k</i> гирек, суммарный вес которых равен <i>S</i>. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

Сумма <i>n</i> положительных чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x<sub>n</sub></i>  равна 1.

Пусть <i>S</i> – наибольшее из чисел   <img align="middle" src="/storage/problem-media/73692/problem_73692_img_2.gif">

Найдите наименьшее возможное значение <i>S</i>. При каких значениях  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>  оно достигается?

а) Из любых двухсот целых чисел можно выбрать сто чисел, сумма которых делится на 100. Докажите это.

б) Из любых  2<i>n</i> – 1  целых чисел можно выбрать <i>n</i>, сумма которых делится на <i>n</i>. Докажите это.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка