Олимпиадные задачи по теме «Последовательности» для 2-5 класса - сложность 2-4 с решениями
Последовательности
НазадМожно ли в записи 2013² – 2012² – ... – 2² – 1² некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?
На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19 (6·1 + 13 = 19). Какое число можно будет прочитать на доске через час?
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
Последовательности положительных чисел (<i>x<sub>n</sub></i>) и (<i>y<sub>n</sub></i>) удовлетворяют условиям <img align="absmiddle" src="/storage/problem-media/109842/problem_109842_img_2.gif"> при всех натуральных <i>n</i>. Докажите, что если все числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>y</i><sub>1</sub>, <i>y</i><sub>2</sub> больше 1, то <i>x<sub>n</sub> > y<sub>n</sub></i> при каком-нибудь натуральном <i>n</i>.
Продолжите последовательность чисел: 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213...