Олимпиадные задачи по теме «Многочлены» для 11 класса - сложность 1 с решениями

Найдите все пары  (<i>p, q</i>)  простых чисел, разность пятых степеней которых также является простым числом.

Разделить  <i>a</i><sup>2<sup><i>k</i></sup></sup> – <i>b</i><sup>2<sup><i>k</i></sup></sup>  на  (<i>a + b</i>)(<i>a</i>² + <i>b</i>²)(<i>a</i><sup>4</sup> + <i>b</i><sup>4</sup>)...(<i>a</i><sup>2<sup><i>k</i>–1</sup></sup> + <i>b</i><sup>2<sup><i>k</i>–1</sup></sup>).

Найдите коэффициент при <i>x</i> у многочлена  (<i>x – a</i>)(<i>x – b</i>)(<i>x – c</i>)...(<i>x – z</i>).

Докажите следующие свойства функций <i>g<sub>k,l</sub></i>(<i>x</i>) (определения функций <i>g<sub>k,l</sub></i>(<i>x</i>) смотри <a href="https://problems.ru/thes.php?letter=12#gaussa">здесь</a>):

  а)  <i>g<sub>k,l</sub></i>(<i>x</i>) = <img width="93" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61522/problem_61522_img_2.gif">,  где  <i>h<sub>m</sub></i>(<i>x</i>) = (1 – <i>x</i>)(1 – <i>x</i>²)...(1 – <i>x<sup>m</sup></i>)   (<i>h</i><sub>0</sub>(<i>x</i>) = 1)...

Вычислите функции <i>g<sub>k,l</sub></i>(<i>x</i>) при  0 ≤ <i>k + l</i> ≤ 4  и покажите, что все они являются многочленами.

Определение многочленов Гаусса <i>g<sub>k,l</sub></i>(<i>x</i>) можно найти в <a href="https://problems.ru/thes.php?letter=12#gaussa">справочнике</a>.

Докажите равенство   (<i>a</i><sup>2</sup> + <i>b</i><sup>2</sup>)(<i>u</i><sup>2</sup> + <i>v</i><sup>2</sup>) = (<i>au + bv</i>)<sup>2</sup> + (<i>av – bu</i>)<sup>2</sup>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка