Олимпиадные задачи по теме «Линейная и полилинейная алгебра» для 7 класса - сложность 1-4 с решениями
Линейная и полилинейная алгебра
НазадВ таблицу записано девять чисел: <div align="center"><img src="/storage/problem-media/98418/problem_98418_img_2.gif"></div>Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:<div align="center"><i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub> = <i>b</i><sub>1</sub> + <i>b</i><sub>2</sub> + <i>b</i><sub>3</sub> = <i>c</i><sub>1</sub> + <i>c</i><sub>2</sub> + <i>c</i><sub>3</sub> = <i>a</i><sub>1</sub> + <i>b</i><sub>1</sub> + &...
Докажите, что если 6<i>n</i> + 11<i>m</i> делится на 31, то <i>n</i> + 7<i>m</i> также делится на 31.
Известно, что выражение 14<i>x</i> + 13<i>y</i> делится на 11 при некоторых целых <i>x</i> и <i>y</i>. Докажите, что 19<i>x</i> + 9<i>y</i> также делится на 11 при таких <i>x</i> и <i>y</i>.
Каков наибольший возможный общий делитель чисел 9<i>m</i> + 7<i>n</i> и 3<i>m</i> + 2<i>n</i>, если числа <i>m</i> и <i>n</i> не имеют общих делителей, кроме единицы?
а) <i>a</i> + 1 делится на 3. Докажите, что 4 + 7<i>a</i> делится на 3.б) 2 + <i>a</i> и 35 – <i>b</i> делятся на 11. Докажите, что <i>a + b</i> делится на 11.