Олимпиадные задачи по теме «Алгебра и арифметика (прочее)» для 10-11 класса - сложность 2 с решениями

Существует ли такое положительное число $x > 1$, что $${x} > {x^2} > {x^3} > \ldots > {x^{100}}?$$ (Здесь ${x}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$

В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

Дано 100 положительных чисел, сумма которых равна S. Известно, что каждое из чисел меньше, чем S/99. Докажите, что сумма любых двух из этих чисел больше, чем S/99.

Существуют ли такие натуральные числа $m$ и $n$, что $m^2+n$ и $n^2+m$ одновременно являются квадратами?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка