Назад

Олимпиадная задача по планиметрии и комбинаторной геометрии для 10 класса от Шаповалова А. В.

Задача

Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.

Решение

  Заметим, что каждые два прямоугольника разбиения имеют параллельные стороны (можно считать, что горизонтальные и вертикальные). Поэтому количество сторон нашего многоугольника чётно (его горизонтальные и вертикальные стороны чередуются).   Лемма. Если 2k-угольник можно разбить на прямоугольники, то его можно разбить на не более чем  k – 1  прямоугольник.

  Доказательство. Сумма углов многоугольника  S = (2k – 2)180°,  и все углы в нём равны 90° или 270°. Если все они по 90°, то это прямоугольник.

  Пусть найдётся угол A в 270°. Продолжим одну из его сторон внутрь многоугольника до пересечения с контуром. Многоугольник разобьётся на две части, причём сумма внутренних углов частей не превосходит суммы внутренних углов многоугольника (продолжение стороны отрезает от угла A угол в 90°, который попадает в одну из частей, и угол в 180°, который лежит на стороне другой части, поэтому исчезает; в то же время дополнительно в этих частях могут возникнуть только два угла по 90° там, где продолжение стороны дошло до контура многоугольника).

  Заметим, что общее количество углов в 270° уменьшилось. Если они еще остались, будем повторять операцию с частями. В конце мы получим n частей без углов 270°, то есть n прямоугольников с общей суммой углов   S = 360°n ≤ (2k – 2)180°,  откуда  n ≤ k – 1.   Из леммы следует, что в нашем многоугольнике число вершин больше 200, иначе его можно разбить на 99 прямоугольников. Разобьём его на m треугольников и рассмотрим сумму их углов:  S = 180°m.  Найдём теперь S, учитывая, что углы треугольников входят в состав углов многоугольника. Каждый угол многоугольника даёт вклад не менее 90° (из угла 270° может быть вычтено 180°, если его вершина лежит на стороне какого-нибудь треугольника), поэтому  S = 180°m > 200·90°,  откуда  m > 100,  что и требовалось.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет