Олимпиадная задача: точки пересечения медиан треугольников внутри квадрата
Задача
Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников ABM, BCM, CDM и DAM образуют квадрат.
Решение
Пусть K, L, P и N – середины сторон AB, BC, CD и AD соответственно. Тогда KLMN – квадрат. Поскольку точка пересечения медиан делит каждую медиану треугольника в отношении 2 : 1, считая от вершины, то при гомотетии с центром M и коэффициентом ⅔ четырёхугольник KLMN переходит в четырёхугольник с вершинами в точках пересечения медиан треугольников ABM, BCM, CDM и DAM. Значит, последний четырёхугольник также является квадратом. 
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет