Олимпиадная задача о двух фишках на шахматной доске – вариант встреч всех позиций
Задача
На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?
Решение
Назовём расположение фишек одноцветным, если фишки стоят на клетках одного цвета, разноцветным – если на клетках разного цвета. Заметим, что при перемещениях фишек одноцветные и разноцветные расположения чередуются, значит, их должно быть поровну. Однако общее количество разноцветных расположений равно 2·32², а одноцветных – 2·32·31, поскольку две фишки не могут стоять на одной клетке. Значит, все возможные расположения встретиться не могут.
Ответ
Не могут.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь