Олимпиадная задача по теории чисел: последовательность, делимость и принцип Дирихле
Задача
Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое натуральное число входит в эту последовательность.
Решение
1) Для данного числа n меньшие числа занимают в последовательности конечное число мест. Если после них встречается число m, не взаимно простое с n, и к этому моменту число n ещё не встретилось, то n будет написано сразу после m. Таким образом, чтобы гарантировать наличие в последовательности числа n, достаточно доказать, что в последовательности встретится бесконечное количество чисел, не взаимно простых с n.
2) Докажем, что для любого N в последовательности присутствует чётное число, большее N. Начиная с какого-то места все члены последовательности больше N. На этом "участке" последовательность не может все время убывать, поэтому на нём найдётся число k, за которым следует большее число m. Если одно из чисел k, m чётно, то все в порядке. В противном случае чётное число k + НОД(k, m), меньшее m и не взаимно простое с k, уже присутствует в последовательности.
Итак, последовательность содержит бесконечное количество чётных чисел.
3) Из 1) и 2) следует, что в последовательности встречаются все чётные числа. Теперь из 1) следует, что в ней встречаются и все натуральные числа.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь