Олимпиадная задача: Квадрат и 25 квадратиков — площадь для 7–9 классов
Задача
Квадрат разрезали на 25 квадратиков, из которых ровно у одного сторона имеет длину, отличную от 1 (у каждого из остальных сторона равна 1).
Найдите площадь исходного квадрата.
Решение
Пусть длина стороны исходного квадрата равна x, а сторона квадрата разбиения, отличная от 1, равна y. Квадрат со стороной y не может прилегать ко всем сторонам исходного квадрата, поэтому x, а, значит, и y, – натуральные числа. Имеем: x² – y² = 24. Поскольку x² – y² = (x + y)(x – y) и числа x + y и x – y одной чётности, то < x + y = 6, x – y = 4 либо x + y = 12, x – y = 2. В первом случае x = 5, y = 1, что не удовлетворяет условию y ≠ 1. Во втором – x = 7, y = 5. Так что площадь исходного квадрата равна 49.
Ответ
Чтобы оставлять комментарии, войдите или зарегистрируйтесь