Назад
Задача

Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

Решение

Рассмотрим на плоскости четыре вектора  (a, b),  (c, d),  (e, f)  и  (g, h).  Один из углов между этими векторами не превосходит  360° : 4 = 90°.  Скалярное произведение соответствующих векторов неотрицательно, а данные шесть чисел являются скалярными произведениями всех пар наших четырёх векторов.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет