Задача
Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную
- Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее${\frac{1}{9}}$.
Решение
Выберем круг наибольшего радиуса, раздуем его в три раза и выбросим все круги, целиком лежащие в этом раздутии. Оставшиеся круги не пересекаются с первым. Для них проделаем то же самое и т. д. Раздутия всех выбранных кругов содержат все данные круги, а площадь раздутия в 9 раз больше площади исходного круга, поэтому 9S$\ge$1, гдеS— общая площадь всех выбранных кругов. Следовательно,S$\ge$1/9.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет