Назад
Задача

Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную

  1. Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее${\frac{1}{9}}$.
Решение

Выберем круг наибольшего радиуса, раздуем его в три раза и выбросим все круги, целиком лежащие в этом раздутии. Оставшиеся круги не пересекаются с первым. Для них проделаем то же самое и т. д. Раздутия всех выбранных кругов содержат все данные круги, а площадь раздутия в 9 раз больше площади исходного круга, поэтому 9S$\ge$1, гдеS— общая площадь всех выбранных кругов. Следовательно,S$\ge$1/9.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет