Назад
Задача

В треугольнике ABC из произвольной точки D на стороне AB проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.

Решение

Радиусы (а значит, и длины) описанных окружностей подобных треугольников ADG, DBF и ABC пропорциональны соответственным сторонам, поэтому все следует из равенства  AD + DB = AB.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет