Задача
После просмотра фильма зрители по очереди оценивали фильм целым числом баллов от 0 до 10. В каждый момент времени рейтинг фильма вычислялся как сумма всех выставленных оценок, делённая на их количество. В некоторый момент времени T рейтинг оказался целым числом, а затем с каждым новым проголосовавшим зрителем он уменьшался на единицу. Какое наибольшее количество зрителей могло проголосовать после момента T?
Решение
Рассмотрим некоторый момент, когда рейтинг уменьшился на 1. Пусть перед этим проголосовало n человек, и рейтинг был целым числом x. Значит, сумма баллов стала равна nx. Пусть следующий зритель выставил y баллов. Тогда сумма баллов стала равна nx + y = (n + 1)(x – 1), откуда
y = x – n – 1. Наибольшее возможное значение x равно 10, а наименьшее возможное значение n равно 1; значит, наибольшее значение y (на первом таком шаге) равно 8.
С каждым следующим шагом значение x уменьшается на 1, а значение n увеличивается на 1. Следовательно, на втором шаге значение y не превосходит 6, на третьем – 4, и т.д. Поскольку любая оценка не меньше 0, число шагов не превосходит 5.
Пять шагов возможны. Пусть рейтинг в момент T равен 10 (при одном проголосовавшем), затем второй зритель выставляет 8 баллов, третий – 6, четвёртый – 4, пятый – 2, а шестой – 0. Тогда рейтинг последовательно принимает значения 9, 8, 7, 6 и 5.
Ответ
5 зрителей.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь