Назад
Задача

Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

Решение

Предположим, что найдётся простое число p, входящее в разложение числа a² на простые множители с показателем меньшим, чем в разложение числа b. То есть, если a делится на pk, но не делится на pk+1, а b делится на pm, но не делится на pm+1, то  m > 2k,  а значит,  m ≥ 2k + 1. Но из делимости a21 на b10 следует, что  21k ≥ 10m.  Отсюда  21k ≥ 10(2k + 1),  то есть  k ≥ 10.  Но  a < 1000 < 210p10pk,  поэтому a не может делиться на pk. Противоречие.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет