Задача
В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.
Решение
Пусть B0, C0 – середины сторон AC, AB соответственно. Так как треугольники AB0B1, AC0C1 – прямоугольные с ∠A = 60°, то AB1 = 2AB0 = AC и
AC1 = 2AC0 = AB. Следовательно, прямая B1C1 симметрична BC относительно биссектрисы угла A. Поскольку эта биссектриса проходит через центр вписанной окружности, а прямая BC касается этой окружности, то и прямая B1C1 её касается.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет