Задача
Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.
Решение
Из условия следует, что радиус rc вневписанной окружности, касающейся стороны AB треугольника ABC, равен высоте hc, проведённой к этой стороне. Поскольку площадь треугольника S = (p – c)rc = ½ chc, то c = 2(p – c), то есть c = 2p/3.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет