Задача
На доске записаны два числа: 2014 и 2015. Петя и Вася ходят по очереди, начинает Петя. За один ход можно
- либо уменьшить одно из чисел на его ненулевую цифру или на ненулевую цифру другого числа;
- либо разделить одно из чисел пополам, если оно чётное.
Выигрывает тот, кто первым напишет однозначное число. Кто из них может выиграть, как бы ни играл соперник?
Решение
Пусть Петя первым ходом заменит 2015 на 2014, а каждым следующим ходом будет уравнивать числа (он всегда может это сделать, повторив ход Васи с тем числом, которое Вася не менял):

Но посмотрим на этот момент внимательнее. Если Вася выиграл, заменив в паре (X, X)одно из двух чисел X на однозначное, то перед этим, на ходу Пети, число X на доске уже было. В этот момент Петя может заменить X на однозначное число и выиграть:

Итак, сформулируем стратегию Пети полностью: "если одно из чисел можно заменить на однозначное – сделать это; в противном случае уравнять два числа".
Ответ
Петя.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь