Олимпиадные задачи из источника «7 класс»

На доске записаны два числа: 2014 и 2015. Петя и Вася ходят по очереди, начинает Петя. За один ход можно

  - либо уменьшить одно из чисел на его ненулевую цифру или на ненулевую цифру другого числа;

  - либо разделить одно из чисел пополам, если оно чётное.

Выигрывает тот, кто первым напишет однозначное число. Кто из них может выиграть, как бы ни играл соперник?

Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.<div align="center"><img src="/storage/problem-media/64578/problem_64578_img_2.gif"></div>

Одуванчик утром распускается, три дня цветет жёлтым, на четвёртый день утром становится белым, а к вечеру пятого дня облетает. В понедельник днем на поляне было 20 жёлтых и 14 белых одуванчиков, а в среду – 15 жёлтых и 11 белых. Сколько белых одуванчиков будет на поляне в субботу?

Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.

(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)

Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.<div align="center"><img src="/storage/problem-media/64575/problem_64575_img_2.gif"></div>

Дети ходили в лес по грибы. Если Аня отдаст половину своих грибов Вите, у всех детей станет поровну грибов, а если вместо этого Аня отдаст все свои грибы Саше, то у Саши станет столько же грибов, сколько у всех остальных вместе взятых. Сколько детей ходило за грибами?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка