Задача
На столе расположено nкартонных и nпластмассовых квадратов, причем никакие два картонных и никакие два пластмассовых квадрата не имеют общих точек, в том числе и точек границы. Оказалось, что множество вершин картонных квадратов совпадает с множеством вершин пластмассовых квадратов. Обязательно ли каждый картонный квадрат совпадает с некоторым пластмассовым?
Решение
Предположим, что есть картонные квадраты, не совпадающие с пластмассовыми. Выбросим из рассмотрения все совпадающие квадраты и рассмотрим выпуклую оболочку вершин оставшихся квадратов. Пусть A — вершина этой выпуклой оболочки. Тогда Aявляется вершиной двух разных квадратов — картонного и пластмассового. Легко проверить, что одна из вершин меньшего из этих квадратов лежит внутри большего (рис.). Пусть для определенности вершина Bкартонного квадрата лежит внутри пластмассового. Тогда точка Bлежит внутри пластмассового квадрата и является вершиной другого пластмассового квадрата, чего не может быть. Получено противоречие, поэтому каждый картонный квадрат совпадает с некоторым пластмассовым.

Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь