Назад
Задача

Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число  m + 6  тоже хорошее, а если число n плохое, то и число  n + 15  тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?

Решение

  Предположим, что число – хорошее, а  n + 3  – плохое. Тогда с одной стороны, число  n + 18 = (n + 3) + 15  должно быть плохим, а с другой стороны, это же число  n + 18 = ((n + 6) + 6) + 6  должно быть хорошим.

  Если же число n – плохое, а  n + 3  – хорошее, то число  n + 15 = ((n + 3) + 6) + 6  должно быть одновременно и плохим и хорошим.

  Полученное в обоих случаях противоречие доказывает, что числа n и  n + 3  всегда принадлежат одному классу. Из этого следует, что любой класс вычетов по модулю 3 является либо целиком хорошим, либо целиком плохим.

  Среди первых 2000 чисел каждый такой класс содержит 666 или 667 чисел. Любой класс содержит меньше 1000 чисел, а любые два класса – больше 1000 чисел. Поэтому ровно 1000 хороших чисел быть не может.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет