Олимпиадные задачи по математике для 2-7 класса - сложность 2 с решениями
Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.
Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.<img src="/storage/problem-media/67302/problem_67302_img_2.png">Пример расположения прямых (без последней прямой) изображен на рисунке.