Олимпиадные задачи по математике - сложность 3-5 с решениями

Даны две равные окружности $\omega_1$ и $\omega_2$ с центрами $O_1$ и $O_2$. На отрезке $O_1O_2$ взяты точки $X$ и $Y$ так, что $O_1Y = O_2X$. Точки $A$ и $B$ лежат на $\omega_1$, и прямая $AB$ проходит через $X$. Точки $C$ и $D$ лежат на $\omega_2$, и прямая $CD$ проходит через $Y$. Докажите, что существует окружность, касающаяся прямых $AO_1$, $BO_1$, $CO_2$ и $DO_2$.<img width="600" src="/storage/problem-media/67433/problem_67433_img_2.png">

Таблица 2×2024 заполнена целыми числами, причём в первой строке стоят числа из набора {1, ..., 2023}. Оказалось, что какие бы два столбца мы ни выбрали, разность их чисел из первой строки делится на разность их чисел из второй строки. Известно, что все числа во второй строке попарно различны. Обязательно ли тогда все числа в первой строке равны между собой?

По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.

Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.

Даны две окружности $\omega_1$ и $\omega_2$, пересекающиеся в точке $A$, и прямая $a$. Пусть $BC$ – произвольная хорда окружности $\omega_2$, параллельная $a$, а $E$ и $F$ – вторые точки пересечения прямых $AB$ и $AC$ с $\omega_1$. Найдите геометрическое место точек пересечения прямых $BC$ и $EF$.

На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.

Даны две концентрические окружности $\Omega$ и $\omega$. Хорда $AD$ окружности $\Omega$ касается $\omega$. Внутри меньшего сегмента $AD$ круга с границей $\Omega$ взята произвольная точка $P$. Касательные из $P$ к окружности $\omega$ пересекают большую дугу $AD$ окружности $\Omega$ в точках $B$ и $C$. Отрезки $BD$ и $AC$ пересекаются в точке $Q$. Докажите, что отрезок $PQ$ делит отрезок $AD$ на две равные части.

Пусть высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Окружность, описанная около треугольника $AHC$, пересекает отрезки $AB$ и $BC$ в точках $P$ и $Q$. Прямая $PQ$ пересекает $AC$ в $R$. На прямой $PH$ взята точка $K$ такая, что $\angle KAC = 90^{\circ}$. Докажите, что прямая $KR$ перпендикулярна одной из медиан треугольника $ABC$.

Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.

В треугольнике $ABC$ выбрана точка $P$. Лучи с началом в точке $P$, пересекающие под прямым углом стороны $BC$, $AC$, $AB$, пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Оказалось, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке $Q$. Докажите, что все такие прямые $PQ$ пересекаются в одной точке.

В остроугольном треугольнике $ABC$ высоты $AH$ и $CH$ пересекают стороны $BC$ и $AB$ в точках $A_1$ и $C_1$. Точки $A_2$ и $C_2$ симметричны относительно $AC$ точкам $A_1$ и $C_1$. Докажите, что расстояние между центрами описанных окружностей треугольников $C_2HA_1$ и $C_1HA_2$ равно $AC$.

В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.

В треугольнике $ABC$ $I$ – центр вписанной окружности, $D$ – произвольная точка на стороне $BC$, серединный перпендикуляр к отрезку $AD$ пресекает прямые $BI$ и $CI$ в точках $F$ и $E$ соответственно. Найдите геометрическое место ортоцентров треугольников $EIF$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка