Олимпиадные задачи по математике для 3-8 класса
Найдите все такие пары натуральных чисел <i>a</i> и <i>k</i>, что для всякого натурального <i>n</i>, взаимно простого c <i>a</i>, число <i>a</i><sup><i>k<sup>n</sup></i>+1</sup> – 1 делится на <i>n</i>.
За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?