Олимпиадные задачи по математике для 3-9 класса

Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2$n$ кубиков, каждый кубик проткнут хотя бы одной спицей.

  а) Докажите, что можно выбрать такие $2n^2$ спиц, идущих в совокупности всего в одном или двух направлениях, что никакие две из этих спиц не протыкают один и тот же кубик.

  б) Какое наибольшее количество спиц можно гарантированно выбрать из имеющихся так, чтобы никакие две выбранные спицы не протыкали один и тот же кубик?

Шеренга состоит из <i>N</i> ребят попарно различного роста. Её разбили на наименьшее возможное количество групп стоящих подряд ребят, в каждой из которых ребята стоят по возрастанию роста слева направо (возможны группы из одного человека). Потом в каждой группе переставили ребят по убыванию роста слева направо. Докажите, что после  <i>N</i> – 1  такой операции ребята будут стоять по убыванию роста слева направо.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка