Олимпиадные задачи по математике для 2-11 класса - сложность 2 с решениями
Дан равнобедренный треугольник <i>ABC, AB = BC</i>. В описанной окружности Ω треугольника <i>ABC</i> проведён диаметр <i>CC'</i>. Прямая, проходящая через точку <i>C'</i> параллельно <i>BC</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i> соответственно. Докажите, что <i>M</i> – середина отрезка <i>C'P</i>.
Дан прямоугольный треугольник <i>ABC</i> с прямым углом <i>C</i>. Пусть <i>BK</i> – биссектриса этого треугольника. Описанная окружность треугольника <i>AKB</i> пересекает вторично сторону <i>BC</i> в точке <i>L</i>. Докажите, что <i>CB + CL = AB</i>.