Олимпиадные задачи по математике - сложность 4 с решениями

В прямоугольном треугольнике $ABC$ $I$ – центр вписанной окружности, $M$ – середина гипотенузы $AB$. Касательная к описанной окружности треугольника $ABC$ в точке $C$ пересекает прямую, проходящую через $I$ и параллельную $AB$, в точке $P$. Точка $H$ – ортоцентр треугольника $PAB$. Докажите, что точка пересечения прямых $CH$ и $PM$ лежит на вписанной окружности треугольника $ABC$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка