Олимпиадные задачи по математике для 8 класса - сложность 3-4 с решениями
Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$. На стороне $BC$ отметили точку $D$. Окружности, описанные около треугольников $BOD$ и $COD$, повторно пересекают отрезки $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Докажите, что из отрезков $BX$, $XY$ и $YC$ можно сложить треугольник.
Из центра $O$ описанной окружности Ω треугольника $ABC$ опустили перпендикуляры $OP$ и $OQ$ на биссектрисы внутреннего и внешнего углов при вершине $B$.
Докажите, что прямая $PQ$ делит пополам отрезок, соединяющий середины сторон $CB$ и $AB$.
В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.