Олимпиадные задачи по математике - сложность 3 с решениями
а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
А если богатырей
б) десять?
в) тридцать три?
В английском клубе вечером собрались <i>n</i> его членов (<i>n</i> ≥ 3). По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.