Олимпиадные задачи по математике
Двое игроков по очереди выставляют на доску 65×65 по одной шашке. При этом ни в одной линии (горизонтали или вертикали) не должно быть больше двух шашек. Кто не может сделать ход – проиграл. Кто выигрывает при правильной игре?
Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется<i>хорошим</i>, если оно касается окружности, и<i>плохим</i>в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.