Олимпиадные задачи по математике - сложность 3 с решениями
На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число?
Найдите наименьшее число вида а) |11<sup><i>k</i></sup> – 5<sup><i>n</i></sup>|; б) |36<sup><i>k</i></sup> – 5<sup><i>n</i></sup>|; в) |53<sup><i>k</i></sup> – 37<sup><i>n</i></sup>|, где <i>k</i> и <i>n</i> – натуральные числа.
Дано<i>n</i>фишек нескольких цветов, причём фишек каждого цвета не<nobr>более <i>n</i>/2.</nobr>Докажите, что их можно расставить на окружности так, чтобы никакие две фишки одинакового цвета не стояли рядом.