Олимпиадные задачи по математике для 4-10 класса - сложность 4 с решениями
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает<i>n</i>точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (<i>n</i>+1)<sup>2</sup>попыток?
В выпуклом многограннике обозначим через B, P и T соответственно число вершин, рёбер и максимальное число треугольных граней, которые имеют общую вершину. Докажите, что {$\text{В}\sqrt{\text{Р}+\text{Т}}\geqslant 2\text{Р}$}. Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.
На сторонах выпуклого шестиугольника $ABCDEF$ во внешнюю сторону построены правильные треугольники $ABC_1$, $BCD_1$, $CDE_1$, $DEF_1$, $EFA_1$ и $FAB_1$. Оказалось, что треугольник $B_1D_1F_1$ правильный. Докажите, что треугольник $A_1C_1E_1$ также правильный.
На сторонах выпуклого шестиугольника <i>ABCDEF</i> во внешнюю сторону построены равносторонние треугольники <i>ABC</i><sub>1</sub>, <i>BCD</i><sub>1</sub>, <i>CDE</i><sub>1</sub>, <i>DEF</i><sub>1</sub>, <i>EFA</i><sub>1</sub> и <i>FAB</i><sub>1</sub>. Оказалось, что треугольник <i>B</i><sub>1</sub><i>D</i><sub>1</sub><i>F</i><sub>1</sub> – равносторонний. Докажите, что треугольник <i>A</i><sub>1</sub><i>C</i><sub>1</sub><i>E</i><sub>1</sub> также равносторонний.
Поверхность выпуклого многогранника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub> состоит из восьми треугольных граней <i>A<sub>i</sub>B<sub>j</sub>C<sub>k</sub></i>, где <i>i, j, k</i> меняются от 1 до 2. Сфера с центром в точке <i>O</i> касается всех этих граней. Докажите, что точка <i>O</i> и середины трёх отрезков <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub&g...