Олимпиадные задачи по математике - сложность 4 с решениями
В таблице из <i>n</i> столбцов и 2<sup><i>n</i></sup> строк, в которых выписаны все возможные различные наборы из <i>n</i> чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
а) сумма всех чисел в выбранных строках равна 0;
б) сумма всех выбранных строк есть нулевая строка.
(Строки складываются покоординатно как векторы.)
Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
а) 700 м?
б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)