Олимпиадные задачи по математике для 10 класса

а) Точка <i>O</i> лежит внутри выпуклого <i>n</i>-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>...<i>A<sub>n</sub></i>. Рассматриваются углы <i>A<sub>i</sub>OA<sub>j</sub></i> при всевозможных парах  (<i>i, j</i>)  (<i>i, j</i> – различные натуральные числа от 1 до <i>n</i>). Докажите, что среди этих углов найдётся по крайней мере  <i>n</i> – 1  не острых (прямых, тупых или развёрнутых) углов.б) То же для выпуклого многогранника, имеющего <i>n</i> вершин.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка