Олимпиадные задачи по математике - сложность 2 с решениями
Даны шесть слов:
ЗАНОЗА
ЗИПУНЫ
КАЗИНО
КЕФАЛЬ
ОТМЕЛЬ
ШЕЛЕСТ
За один шаг можно заменить любую букву в любом из этих слов на любую другую (например, за один шаг можно получить из слова ЗАНОЗА слово ЗКНОЗА. Какое наименьшее число шагов нужно, чтобы сделать все слова одинаковыми (допускаются бессмысленные)?
В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок). <img src="/storage/problem-media/103867/problem_103867_img_2.gif"> Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.
Дан прямоугольный треугольник (см. рисунок). Приложите к нему какой-нибудь треугольник (эти треугольники должны иметь общую сторону, но не должны перекрываться даже частично) так, чтобы получился треугольник с двумя равными сторонами. <img src="/storage/problem-media/103855/problem_103855_img_2.gif">
Если смотреть на аквариум спереди, то рыбка проплыла, как показано на левом рисунке. А если справа — то как на правом рисунке. Нарисуйте вид сверху.<img src="/storage/problem-media/103823/problem_103823_img_2.gif">
Полоска 1×10 разбита на единичные квадраты. В квадраты записывают числа 1, 2, ..., 10. Сначала в один какой-нибудь квадрат записывают число 1, затем число 2 записывают в один из соседних квадратов, затем число 3 – в один из соседних с уже занятыми и т. д. (произвольными являются выбор первого квадрата и выбор соседа на каждом шагу). Сколькими способами это можно проделать?