Олимпиадные задачи по математике для 11 класса
В каждую клетку бесконечного листа клетчатой бумаги вписано некоторое число так, что сумма чисел в любом квадрате, стороны которого идут по линиям сетки, по модулю не превосходит единицы.
а) Докажите существование такого числа <i>c</i>, что сумма чисел в любом прямоугольнике, стороны которого идут по линиям сетки, не больше <i>c</i>; другими словами, докажите, что суммы чисел в прямоугольниках ограничены.
б) Докажите, что можно взять <i>c</i> = 4.
в) Улучшите эту оценку – докажите, что утверждение верно для <i>c</i> = 3.
г) Постройте пример, показывающий, что при <i>c</i> > 3 утверждение неверно.
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.