Олимпиадные задачи по математике для 8 класса
Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
а) набор цифр 1234; 3269; б) вторично набор 1975; в) набор 8197?
Окружность разбита точками<i>A</i><sub>1</sub>,<i>A</i><sub>2</sub>,...,<i>A</i><sub><i>n</i></sub>на<nobr><i>n</i> равных</nobr>дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги<i>A</i><sub>2</sub><i>A</i><sub>6</sub>и<i>A</i><sub>6</sub><i>A</i><sub>10</sub>одинаково окрашены.)Докажите, что если для каждой точки разбиения <i>A</i><sub><i>k</i><...