Олимпиадные задачи по математике для 7 класса - сложность 3 с решениями
В параллелограмме <i>ABCD</i> опустили перпендикуляр <i>BH</i> на сторону <i>AD</i>. На отрезке <i>BH</i> отметили точку <i>M</i>, равноудалённую от точек <i>C</i> и <i>D</i>. Пусть точка <i>K</i> – середина стороны <i>AB</i>. Докажите, что угол <i>MKD</i> прямой.
Максим сложил на столе из 9 квадратов и 19 равносторонних треугольников (не накладывая их друг на друга) многоугольник. Мог ли периметр этого многоугольника оказаться равным 15 см, если стороны всех квадратов и треугольников равны 1 см?