Олимпиадные задачи по математике для 7 класса - сложность 3 с решениями
Каждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
Правильный треугольник разрезан на треугольники, каждый из которых либо прямоугольный, либо равнобедренный. Все прямоугольные треугольники равны друг другу, все равнобедренные – тоже. Обязательно ли все углы равнобедренных треугольников кратны $30^\circ$?
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?