Олимпиадные задачи по математике для 11 класса - сложность 4 с решениями
У Ани и Бори было по длинной полосе бумаги. На одной из них была написана буква А, на другой – Б. Каждую минуту один из них (не обязательно по очереди) приписывает справа или слева к слову на своей полосе слово с полосы другого. Докажите, что через сутки слово с Аниной полосы можно будет разрезать на 2 части и переставить их местами так, что получится то же слово, записанное в обратном порядке.
На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
а) Может ли площадь такого треугольника быть больше ½?
б) Найдите наибольшую возможную площадь такого треугольника.